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postulated intermediate 3 can be deprotonated to the corresponding 
ortho ester, whose formation provides positive proof of its existence 
along the reaction pathway.12 Conditions were chosen such as 
to maximize its stability toward fragmentation and to maximize 
its deprotonation rate by the base over the nucleophilic attack of 
the latter at the precursor ion 2. Table II illustrates the mixed 
success encountered in the experiments directed to isolate ortho 
esters. Successful results have been obtained when one or more 
of the following conditions were fulfilled: (i) the presence of a 
strong base of moderate nucleophilicity, such as NEt3, (ii) the 
presence of a phenyl substituent at the carbon center, which 
stabilizes 3 relative to 2,13 (iii) the presence of fluorine atoms in 
R or R',2c which inductively destabilize 2 with respect to 3. 

In conclusion, the evidence from this study supports an addi
tion-elimination mechanism as the major pathway for the gas-
phase cation-induced ester alcoholysis, showing that the latter 
occurs via a tetrahedral intermediate, the discrepancy with the 
mechanism invoked in low-pressure ICR spectrometry probably 
arising from the different reaction environment. Fast collisional 
quenching of excited intermediates and stabilization of charged 
species by multiple interactions with dipolar molecules make the 
fundamental difference between low-pressure mass spectrometric 
studies and the radiolytic approach, undoubtedly a better way to 
derive reactivity models for liquid-phase reactions. 
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Haliclona sp., a thin red encrusting sponge from Papua New 
Guinea, which overgrows and kills coral, contains as its major 
metabolite (1.3% of dry weight) a pentacyclic alkaloid, papuamine 
(1), which is formally derivable from a C22 unbranched hydro
carbon and 1,3-diaminopropane. Pure papuamine inhibits the 
growth of the fungus Trichophyton mentagrophytes.1 

Haliclona sp. (120 g wet) was collected in November, 1985, 
at South Lion island, Papua New Guinea; the frozen sponge was 
thawed and extracted three times with MeOH and then chloro
form. The aqueous methanolic concentrate was subjected to 
successive partition with hexane, carbon tetrachloride, and 
chloroform.3 The antifungal activity resided in the two chloroform 
extracts and remained at the origin in normal (silica, EtOAc) and 
reversed phase TLC (RP-18, MeOH). It moved in either mode 
when triethylamine (5%) was added. Final purification was 
achieved either by flash chromatography4 (BioSil A, EtOAc/ 
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Figure 1. Selected correlations of papuamine (1) from INADEQUATE, 
2D-NOE, COSY, and HETCOR experiments. 

MeOH, Et3N, 55:40:5) which produced the natural ammonium 
salt (2)5 or by HPLC (Waters Porasil, EtOAc/Et3N, 95:5), which 
freed the amine 1 (180 mg).6 

Papuamine (1) is an optically active solid of composition 
C25H40N2. A diacetamide 3,7 C29H44N2O2, produced an EIMS 
fragment at mjz 294 (C22H30). This corresponds to the molecular 
ion C29H44N2O2 (mjz 452) minus two acetyls (C4H6O2) minus 
C3H8N2. The structure of this fragment >NACH2

BCH2
A'CH2N( 

rests on 1HNMR data of the salt 2. Two proton multiplets at 
5 3.19 and 2.98 are assigned to pseudoaxial and pseudoequatorial 
protons A and A', while an apparent one-proton multiplet at 5 
2.0 represents the B protons based on heteronuclear correlation 
data (Table V, Supplementary Material). Additionally, two 
complex olefinic 1H NMR signals at S 6.50 and 5.89 representing 
four protons are assigned to an s-trans-diene (X1112x 241 nm), after 
comparison with computer-generated spectra of conjugated dienes 
of different geometry. Mutually coupled signals at & 3.55 and 
2.63 arise from methines vicinal to nitrogen and olefin, respectively. 

(4) Still, W. C; Kahn, M.; Mitra, A. J. Org. Chem. 1978, 43, 2923-2925. 
(5) Papuamine dihydrochloride (2): white solid, mp 230 0C dec; [a]D 

-140° (e 1.3, MeOH); UV \J^fH 241 (3000) nm; IR (CHCl3) i w 3700 br, 
2930, 2850, 1560, 1450, 1230, 1050,1010, 730 cm"1; HREIMS mjz 368.3173 
(C25H40N2 requires 368.3192); FABMS (positive ion) m/z 369 (100%); 
HRFABMS m/z 369.3258 (C25H41N2 requires 369.3270); 1H NMR (300 
MHz, CD3OD) S 6.50 (2 H, H-16, 17, complex dd, J = 10.5, 15.8Hz), 5.89 
(2 H, H-15, 18, complex dd, J = 8.3, 15.8), 3.55 (2 H, H-6, 27, br ddd, J = 
8.2, 8.2, 8.8 Hz), 3.19 (2 H, H-2y, 4y, br ddd, Z 2 3 = 13.5), 2.98 (2 H, H-2z, 
4z, br dt, J = 3, 10.6 Hz), 2.63 (2 H, H-14, 19, br ddd, J = 9.3, 9.3, 10.6 Hz), 
2.41 (2 H, H-IR, 265, ddd, /7R.8 = 4.8 Hz, J1^ = 8.8 Hz, J7R.7S = 12.0 Hz), 
2.0 (2 H, H2-3, multiplet), 1.9-1.6 (8 H, multiplet of equatorial protons), 1.4 
(2 H, H-13, H-20, dddd J = 10.6), 1.3-1.1 (10 H, multiplet of axial protons), 
1.0 (2 H, H-IOa, 23a, ddd, J = 3, 10.2, 12.6 Hz); '5C NMR (75 MHz, 
CD3OD) S 136.02 (d), 130.46 (d), 62.09 (d), 50.49 (d), 49.28 (d), 46.97 (t), 
44.65 (d), 39.14 (t), 32.07 (t), 30.79 (t), 27.04 (t), 24.60 (t). 

(6) Papuamine (1): white solid, mp 167.5-169 0C; [a]D -150° (c 1.5, 
MeOH); IR (film): »„ , 3000, 2920, 2850, 1400, 1100 cm"1; 1H NMR (300 
MHz, CD3OD) S 6.22 (2 H, H-16, 17, dd, J - 10.5, 15.8 Hz), 5.71 (2 H, 
H-15, 18, dd, J - 8.3, 15.8 Hz), 3.05 (2 H, H-6, 27, br dd, J = 8.2, 8.2, 8.8 
Hz), 2.64 (2 H, H-2y, 4y, m), 2.22 (2 H, H-2z, 4z, m), 2.21 (2 H, H-14, 19, 
m), 2.17 (2 H, H-7.R, 265, m), 1.82 (2 H, H-9e, 24e, m), 1.78 (2 H, H-12e, 
2Ie, m), 1.70 (2 H, H-IOe, 23e, m), 1.68 (2 H, H-He, 22e, m), 1.6 (2 H, H2-3, 
m), 1.23 (2 H, H-8, 25, m), 1.2 (4 H, H-75, 26/?, Ha, 22a, m), 1.19 (4 H, 
H-13, 20, 10a, 23a, m), 0.9 (4 H, H-9a, 24a, 12a, 21a, m); 13C NMR (100 
MHz, CDCl3) 5 131.85 (d), 129.37 (d), 60.91 (d), 50.02 (d), 48.88 (d), 45.99 
(t), 43.58 (d), 40.40 (t), 31.26 (t), 30.09 (t), 26.08 (t), 26.03 (t). 

(7) Papuamine diacetamide (3): prepared from 6.6 mg of 1, 0.5 mL of 
Ac2O, 2 mL of pyridine, <5 min; purified by Bond Elut (EtOAc/Et3N, 95:5), 
HPLC (Waters Micro BondaPak, EtOAc/petroleum ether, 70:30); white 
semisolid; EIMS (70 eV) m/z (%) 452 (9.5), 409 (17.5), 294 (47.0); 
HREIMS 452.34071, C29H44N2O2 requires 452.340287; 409.32259, C27-
H41N2O requires 409.321896; 294.23466, C22H30 requires 294.234756; 
158.10605, C7H14N2O2 requires 158.105531; 115.08792, C5H11N2O requires 
115.087140; 43.018124, C2H3O requires 43.018391; FABMS (positive ion) 
m/z 453 (100%); 1H NMR (300 MHz, CDCl3) S 6.1 (2 H, H-16, 17, br s), 
5.6 (2 H, H-15, 18, br s), 4.5 (2 H, br s) 4.3 (2 H, br s), 3.7 (2 H, br s), 3.5 
(2 H, br s), 3.2 (2 H, br s), 2.8 (2 H, br s), 2.6 (2 H, br s), 2.1 (3 H, OAc), 
2.1 (3 H, OAc), 1.8 (10 H, br m), 1.2 (12 H, br m). 
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These data delineate part structure a. 

3_ R = A c 

Only 12 13C NMR signals are observed: ten (5 136.02-30.79) 
represent two carbons each; a triplet at 6 27.04 integrates for one, 
a triplet at 5 24.60 for four carbons.5 Papuamine (1) therefore 
is a pentacyclic diamine symmetrical about a line through the 
central methylene (8 27.04) and bisecting the C-16,17 bond (C2 
symmetry axis). COSY, RCT8 (Tables I and II, Supplementary 
Material), and 2D INADEQUATE (Table III, Supplementary 
Material) experiments allowed expansion to part structure b, which 
is compatible with 1 or a cage structure, where C-10 is bonded 
to C-23 or C-22 and C-11 to C-22 or C-23. Observed coupling 
between C-10,11 (or C-22,23) methylenes eliminates the cage 
structure. A 2D NOE experiment (Table IV, Supplementary 
Material) allowed stereochemical assignments, and heteronuclear 
correlation data (Table V, Supplementary Material) confirmed 
the structure. Figure 1 summarizes the essential data from Tables 
I-V (Supplementary Material). 

Evidence that the natural compound is a dihydrochloride derives 
from treatment of 2 with triethylamine in methanol, yielding 
crystalline triethylammonium chloride, and by quantitative high 
performance ion chromatography.9 

A Dreiding model of papuamine (2) reveals a flexible 13-
membered ring, which allows many spatial arrangements of the 
two trans hydrindanes. This unique alkaloid bears no biogenetic 
resemblance to other known Haliclona metabolites, polymeric 
alkylpyridines,10 irregular sesquiterpenes,11 or a complex polycyclic 
alkaloid.12 
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The transfer of chirality from sulfur to carbon has become a 
useful tool in asymmetric synthesis. Particularly notable in this 
area is the use of a chiral sulfinyl group to induce asymmetry in 
adjacent carbon centers.1 Within this context, we have reported 
that Y-arylsulfanyl-7-butyrolactones can be prepared in optically 
pure form and in useful yields by an enantiospecific [3,3] sig-
matropic rearrangement of chiral vinyl sulfoxides with ketenes.2,3 

A distinctive feature of this new lactonization reaction is the 
transfer of chirality from sulfur to as many as three contiguous 
carbon centers.2b 

In order to extend the synthetic utility of the sulfoxide-directed 
lactonization, we investigated the stereospecific replacement of 
the sulfur auxiliary from the newly created chiral 7-aryl-
sulfanylbutyrolactones. Our first expectation was that an intra
molecular substitution of the arylsulfanyl moiety by a carbon-based 
group would result in the formation of a ring-fused butyrolactone 
in optically active form. Such a strategy would be very valuable 
in the synthesis of naturally occurring sesquiterpene lactones. In 
this paper, we report that a variety of chiral ring-fused butyro-
lactones 4 can be prepared in a stereocontrolled fashion as outlined 
in Scheme I. Method A proceeds by homolytic cleavage of the 
7-carbon-sulfur bond and subsequent intramolecular trapping of 
the resulting a-acyloxy radical.4,5 Method B, on the other hand, 
formally involves an oxygen-assisted ionization of the arylsulfanyl 
group and a nucleophilic attack at the newly generated a-acyloxy 
carbocation. Method A is best suited for the synthesis of cis fused 
cyclopentabutyrolactones, whereas method B is the preferred route 
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